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Eigenvalue Elasticity Analysis 
Rogelio Oliva 

Abstract 

Eigenvalue elasticity analysis (EEA) is a set of methods to assess the effect of structure on behavior in 
dynamic models. It works by considering observed model behavior as a combination of characteristic 
behavior modes and by assessing the relative importance of particular elements of system structure in 
influencing these behavior modes. Elements of the model structure that have a large influence on 
particular behaviors can provide important clues to the modeler to identify areas for further testing and 
study, and for policy analysis. The method uses linear systems theory to 1) decompose the observed 
behavior into its constituent behavior modes, such as oscillation, growth, and exponential adjustment, and 
2) outline how a particular behavior modes and its appearance in a given system variable depend upon 
particular parameters and structural elements (links and loops) in the system. In this manner, the method 
provides a very precise account of the relationship between structure and behavior. 

Introduction 

The link between system structure and dynamic behavior is one of the defining elements of dynamic 
modeling. In a sense, a simulation model can be viewed as an explicit and consistent theory of the 
behavior it exhibits. Although this point of view has certain merits, not least the fact that it lifts the 
discussion from outcomes to causes of these outcomes and from events to underlying structure (Forrester 
1961, Sterman 2000), we are concerned here with a more compact explanation of the system’s behavior. 
In fact, most dynamic modeling projects report their results in terms of simpler explanations of the 
observed results, typically in terms of dominant feedback loops and, occasionally, external driving forces 
to the system that produce the salient features of the behavior. 
 
For simple systems with relatively few variables it is usually easy to use intuition and trial and error 
simulation experiments to explain the dynamic behavior as resulting from particular feedback loops. In 
larger systems, this method becomes increasingly difficult and the risk of incorrect explanations rises 
accordingly. There is a need, therefore, for analytical methods that provide some consistency and rigor to 
this process. 
 
These analytical tools are important to the practitioner because the structure-behavior link is the key to 
finding leverage points for policy initiatives. And they are important to the theorist because a system 
dynamics theory of a particular phenomenon is an account of how certain feedback loops cause certain 
dynamic patterns of behavior to appear. The qualitative understanding of the model behavior is often at 
least as important as the particular numerical predictions obtained, even in applied studies. Yet the rigor 
of such an account depends directly on the rigor with which structure-behavior link can be established in 
a given model. 

Eigenvalue elasticity analysis (EEA) is a set of methods to assess the effect of structure on behavior in 
dynamic models. It works by considering observed model behavior as a combination of characteristic 
behavior modes and by assessing the relative importance of particular elements of system structure in 
influencing these behavior modes. Elements of the model structure that have a large influence on 
particular behaviors can provide important clues to the modeler to identify areas for further testing and 
study, and for policy analysis. The method represents a high degree of mathematical rigor compared to 
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the traditional experimental simulation methods normally used in the field. The method uses linear 
systems theory to 1) decompose the observed behavior into its constituent behavior modes, such as 
oscillation, growth, and exponential adjustment, and 2) outline how a particular behavior modes and its 
appearance in a given system variable depends upon particular parameters and structural elements (links 
and loops) in the system. In this manner, the method provides a very precise account of the relationship 
between structure and behavior. 

The EEA method enables large-scale models to be analyzed systematically in a manner that is not 
possible or practical using trial and error simulation. Given the rigor and relative sophistication of the 
method, it may also provide legitimacy to dynamic model analysis in fields that are traditionally 
dominated by analytical mathematics, such as economics and econometrics.  

The purpose of the elasticity analysis is to analyze the relative importance of structural elements, not to 
estimate the strength of system elements or values of system parameters. Therefore, the method works 
very much from a given model structure and parameter set and then tells you something about what 
would happen if you modify the structure and/or parameters. It, thus, fits mostly in the interpretation and 
policy analysis stages of model building. It may also prove useful in the model building and testing stage, 
to the extent that it can help identify structures that produce unwanted or puzzling behavior. 

The EEA methods are similar in aims and scope to the Pathway Participation Method (PPM) 
(Mojtahedzadeh, Andersen, and Richardson 2004). The main difference between the two approaches is 
that while PPM emphasizes identifying a single “dominant” structure that drives the behavior of a 
particular variable, and does so relying primarily on partial system structures, the EEA approach provides 
an overview of the relative influence that different pathways simultaneously have on a variable and does 
so considering global system properties (see Mojtahedzadeh 2008 for a comparison of the two methods). 
Duggan and Oliva (2013) summarize other methods that rely on iterative and sensitivity-based 
approaches to explore dominant structure.  

A word of caution is in order: Like any other quantitative method, there is always an element of judgment 
and interpretation when employing the method in practice that cannot be avoided. Moreover, the results 
of the EEA may require some work to interpret: since the method involves a translation from patterns of 
behavior over time to complex number eigenvalues, the results can appear highly abstract. New measures 
are under way to facilitate more direct interpretation, but these are still in the developmental stage. 

Background and Formulation 

The method of using eigenvalue elasticities is based on the tools from modern linear systems theory 
(Chen 1970, Luenberger 1979), applied to a linearized model. The method was first introduced in system 
dynamics with Nathan Forrester’s doctoral dissertation (1982). He used the method in the context of a 
macroeconomic model to explore various stabilization policies. However, the method was only peripheral 
to the dissertation, with most of the emphasis being traditional simulation experiments. Some attempts 
were made using eigenvalue analysis in the National Model project at MIT, but the limited availability of 
software and difficulty in interpreting the results prevented the method from gaining extensive use.  
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In 1996, Kampmann (2012) reintroduced the method by combining it with network and graph theory to 
reveal some fundamental relationships between feedback loops and eigenvalue elasticities. In particular, 
he highlighted that there is typically a very large number of alternative loop descriptions of a system and 
introduced the notion of an independent loop set (ILS), somewhat similar to the set of basis of a vector 
space, from which all other feedback loops can be said to be derived from. He further demonstrated how 
eigenvalues or behavior modes1 are in a sense determined only by the loop gains in the independent set 
while the appearance of these behavior modes in the behavior of individual variables is a function of the 
link gains in the system. 

The traceability of eigenvalue elasticity to specific feedback loops, together with the availability of 
software to support numerical and algebraic analysis (e.g., Mathematica, Maple, Matlab), and the 
advances of Pathway Participation Method, triggered a stream of research to test and expand the 
usefulness and applicability of EEA.2 Kampmann and Oliva (2006) automated some of the computational 
requirements to perform EEA and tested the method across three types of models. They found that the 
utility of the method depended on the model structure, and that it was most useful for large-scale quasi-
linear models. Güneralp (2006) developed a new measure that takes all model modes into account and 
proposed a normalization approach for elasticity values. Gonçalves (2009) and Saleh et al. (2010) 
extended the eigenvalue approach to focus on the overall trajectory of a state variable, and in particular 
the contribution of the eigenvector, which allows for the analysis of both short- and long-term impact on 
changes in link and loop gains. These papers, however, have focused on explaining how the method 
works and guiding the interpretation of results. As such, the authors have chosen simple and well-behaved 
models in which it is relatively easy to map the method’s outcomes with the observed behavior and 
structure. To date, there is no documented case of the benefits of the application of the EEA methods to a 
realistic model, where structural dominance analysis is hypothesized to be most effective. 

The following subsection provides an analytical description of the EEA method. 

Analytical Description 

Characterizing linear and nonlinear systems 

A dynamic model can be represented mathematically as a set of ordinary differential equations 

!𝐱(!)
!"

= 𝒙 𝑡 = 𝐟 𝐱 𝑡 ,𝐮 𝑡 , (1) 

where x(t) is a column vector of n states variables (levels), u(t) is a column vector of p exogenous 
variables, f is a corresponding vector function, and t is simulated time. The system is said to be linear 
(nonlinear) if f is a linear (nonlinear) function of its arguments. Given the model structure (1), knowledge 
of the initial conditions x0, and the path of the input variables u(t), the behavior of the model is 
completely determined. In this sense, the model structure (1) constitutes a “theory” of the behavior x(t).  

                                                        
1 Since behavior modes are based upon the eigenvalues, the terms “behavior mode” and “eigenvalue” are used 
interchangeably in the following. 
2 See Duggan and Oliva (2013) for extended bibliography of this research stream. 
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The approaches considered in this chapter are based on tools from linear systems theory (Chen 1970) and 
they approximate the nonlinear model (1) with a linearized version, using the first-order Taylor expansion 
around some operating point x0, u0, i.e., 

𝐱 𝑡 ≈ 𝐟 𝐱𝟎,𝐮𝟎 +
𝑑𝐟
𝑑𝐱

𝐱 − 𝐱𝟎 +
𝑑𝐟
𝑑𝐮

𝐮 − 𝐮𝟎  

or, by redefinition of the variables 𝐱 → 𝐱 − 𝐱! − 𝐟 𝐱𝟎,𝐮𝟎 𝑡 − 𝑡!  and 𝐮 → 𝐮 − 𝐮𝟎, 

𝐱 𝑡 ≈ 𝐀𝐱 𝑡 + 𝐁𝐮 𝑡 ,  (2) 

where A is a constant 𝑛×𝑛 matrix of partial derivatives 𝜕𝑓! 𝜕𝑥! and B is a constant  𝑛×𝑝 matrix of partial 
derivatives 𝜕𝑓! 𝜕𝑢!, and all partial derivatives are evaluated at the operating point. These matrices of first 
order partial derivatives are know as Jacobian matrices. Both the eigenvalue and eigenvector elasticity 
analysis based are upon this approximated system.  

Initially, one may primarily be concerned with the endogenous response of the system, in which case one 
can set the exogenous or control variables to a constant.3 In the absence of changes in exogenous inputs, 
the resulting behavior of any given state variable 𝑥(𝑡) can be written as a weighted sum of a set of 
behavior modes,  

 𝑥! 𝑡   =   𝑤!,! + 𝑤!,!𝑒!!! +⋯+ 𝑤!,!𝑒!!!, (3) 

where the 𝜆’s are the eigenvalues of the system Jacobian matrix A and the weights 𝑤 are constants that 
depend upon the eigenvectors and the initial conditions of the system (see Saleh et al. 2010 for 
derivation).  

Equation (3) yields three important insights. First, each of the system eigenvalues represents a behavior 
mode. For real eigenvalues, the behavior mode 𝑒!" amounts to an exponential growth (𝜆 > 0) or 
adjustment (𝜆 < 0). Complex eigenvalues appear in conjugate pairs 𝛿 ± 𝑖𝜔, which give rise to 
oscillations 𝑒!"sin  (𝜔𝑡 + 𝜃) of frequency 𝜔  that are either expanding (if 𝛿 > 0) or damped oscillations 
(if 𝛿 < 0). The absolute value of 𝜆 is known as the natural frequency 𝑓! = 𝜆 = 𝛿! + 𝜔! while the 
imaginary part of 𝜆 is known as damped frequency 𝑓! = 𝜔. 

 
                                                        
3 See Kampmann and Oliva (2006) for a discussion of when such an approximation is appropriate and useful. 
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Figure 1. Characterization of eigenvalues in the complex plane 

Second, the behavior of every state variable in the system is a constant weighted sum of the system 
behavior modes. That is, the behavior of every state variable in the system is the result of how each of the 
behavior mode λ is projected into that state variable w. Finally, the system core behavior modes are 
structurally determined, as they are derived from the eigenvalues λ of the system matrix A.  

Different ‘flavors’ of EEA emphasize each of the three insights in different ways (Kampmann and Oliva 
2008, 2009). For example, EEA can be used to develop ‘structural explanations of behavior’ as it can 
pinpoint which system elements are responsible for generating a particular behavior mode λ. 
Alternatively, the tools can be used to derive effective policy recommendations by isolating the system 
elements that affect the projection of a particular reference mode in a stock (w), or altogether change the 
system reference modes λ. Before describing in details the tools to perform these analyses, the next 
subsection presents an example of these computations with a simple model.  

Simple Example 

Consider the Lotka-Volterra model in Figure 2, defined by the following equations 

𝑑𝑥
𝑑𝑡

= 𝐵𝑥 − 𝐷𝑥,
𝑑𝑦
𝑑𝑡

= 𝐵𝑦 − 𝐷𝑦, 

𝐵𝑥 = 𝑎𝑥, 𝐷𝑥 = 𝑏𝑥𝑦, 𝐵𝑦 = 𝑐𝑥𝑦, 𝐷𝑦 = 𝑑𝑦 

Where x represents the prey population, y the predator population and the parameters, a, b, c, and  d, 
determine respectively the natural growth rate of the pray population in the absence of predators, the 
efficiency of predation, the predator reproduction rate (per available pray), and the natural death rate of 
predators in the absence of pray. With appropriate initial conditions and parameter values, the model 
reaches a limit cycle with the two populations rising and falling alternatively (see Figure 2). 
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Figure 2 Structure, trace and phase plot of Lotka-Volterra model† 
†Parameter values: a=1, b=0.2, c=0.04, and d=0.5; initial conditions x0=10 and y0=2. 

Since the model has no exogenous inputs, the matrix representation of the system can be derived directly: 

𝑥
𝑦 = 𝑎 − 𝑏𝑦 −𝑏𝑥

𝑐𝑦 𝑐𝑥 − 𝛿
𝑥
𝑦  

The eigenvalues of the Jacobian or system matrix A are the conjugated pair  

𝑎 − 𝑑 + 𝑐𝑥 − 𝑏𝑦 ± 𝑎 + 𝑑 − 𝑐𝑥 ! − 2𝑏𝑦 𝑎 + 𝑑 + 𝑐𝑥 + 𝑏!𝑦! 2. 

The eigenvalues are a function of x and y, so their value will change throughout the simulation. The 
eigenvalues at time zero are 0.25±0.194i and at that point in time the behavior of the two stocks can be 
represented by the following equations: 

𝑥 = 20 − 45.018  𝑒!.!"!𝑠𝑖𝑛 0.224 − 0.194𝑡   
𝑦 =     8 −       9.004  𝑒!.!"!𝑠𝑖𝑛 0.729 − 0.194𝑡 , 

where the first term represents a scaling parameter, the coefficient of the second term the weight w of the 
behavior mode on that stock (in this case the two eigenvalues collapsed into a single oscillatory behavior 
mode), and the first term inside the sin function represents the phase lag of this projection. Although these 
trajectory equations are only valid around the operating point x=10, y=2, i.e., the trajectory equations will 
change with the eigenvalues, they give a clear indication of the tendency of the system and it is possible 
to assess the impact of the system structure on the behavior at that point in time. To fully understand the 
behavior of the system, it would be necessary to replicate the analysis at different operating points. Before 
leaving this example, however, it should be noted that for most stock values within the limit cycle, the 
eigenvalues take complex values indicating an oscillatory behavior mode. 

The main strategies for exploiting the information available in this description of the system are described 
in the following subsections.  

Eigenvalue Elasticity and Influence 

The EEA is concerned with assessing how system structure affects the behavior modes (𝜆) as well as the 
projections of those behavior modes in a particular stock (w). A measure of the impact on an eigenvalue 𝜆 
when one changes individual elements a of the system matrix is the eigenvalue elasticity,  

 𝜀   =    !"
!"

!
!
.  

The most granular element of system structure is the gain of a link between two variables, i.e. the ratio of 
the output to the input. For example, in the model above, the gain of the link between x and By is cy. 
Clearly, all elements a of the system matrix A are combinations of these individual link gains, and thus it 
is possible to make assessments of eigenvalue elasticity to each link gain and model parameter. 

For a complex-valued eigenvalue, the elasticity measure will also be a complex number. One may define 
the elasticities of the real and imaginary parts separately, i.e., as the real numbers 

 𝜀!   =   
!"
!"

!
!
, 𝜀!   =   

!"
!!

!"
!

,  
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respectively. Note that it is not the case that Re{ε} = ε! or Im{ε} = ε!, since 

 𝑅𝑒 𝜀   =    !!!
!!!!!!

!!!!! , 𝐼𝑚 𝜀   =    !!!!! !"
!!!!! .  

Kampmann and Oliva (2006), however, found that it is often easier to work with the so-called influence 
measure instead, defined as 

 𝜇   =    !"
!"
𝑎, 𝜇!   =   

!"
!"
𝑎, 𝜇!   =   

!"
!"
𝑎. (4) 

For the influence measures, it is indeed the case that Re[ 𝜇] = 𝜇!  and Im[𝜇] = 𝜇!. In addition to 
simplifying interpretation, the influence measures also remove technical difficulties involved when 
eigenvalues are close to zero4. 

Loop Eigenvalue Elasticity Analysis (LEEA) 

Kampmann (2012) showed that it was possible to express the characteristic polynomial5 of the system 
matrix A, that is, the polynomial whose zeros are the eigenvalues of A, in terms of the gains of the loops 
in what he termed an independent loop set (ILS). The loop gain is defined as the product of the gains of 
its constituent links; for example, in the model above, the loop gain of the loop formed by {x, y, x} is (-
bcxy). An independent loop set is a maximal set of loops whose gains can be determined or changed 
independently of each other through an appropriate assignment or change in the link gains of the system.  
The gain of any loop outside this set is then dependent upon the loop gains in the ILS. Put differently, the 
ILS is a complete description of the feedback structure of the system, where the many additional feedback 
loops are redundant. 

Once an ILS has been identified (see Oliva 2004, Kampmann 2012 for procedures), it is straightforward 
to calculate the gain g of each loop in the set and then use those gains as the basis for exploration of the 
behavior of the eigenvalues. Specifically, the loop eigenvalue elasticity and the loop influence metrics are 
defined as 

 𝜀   =    !"
!"

!
!
, and  𝜇   =    !"

!"
𝑔. (5) 

While the ILS is not unique in a model, this decomposition focuses the analysis in a relevant subset of 
loops. In particular, changes in relationships in the model that are not part of a feedback loop will have no 
effect upon the system eigenvalues. Thus, one can interpret the elasticities or influence measures in terms 
of how they affect the gains of a set of (independent) feedback loops in the system. Alternatively, one can 
assess the relative importance of particular feedback loops in generating a particular mode of behavior, 
where loops with large elasticities (or influence) are considered important for the behavior mode in 
question.  

                                                        
4 While the elasticity measure has the advantage that it is a dimensionless measure and hence independent of the 
choice of units in the model, the influence measure has the dimension 𝑡𝑖𝑚𝑒!!, and so depends upon the chosen time 
unit.  However, it is still independent of the choice of the other units in the model. 
5 The characteristic polynomial is defined as P(λ)=det(λI-A), where I is the identity matrix. The eigenvalues of A 
are the roots of P(λ)=0.  
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Dynamic Decomposition Weight Analysis (DDWA) 

The Eigenvector, or Dynamic Decomposition Weight Analysis, introduced by Saleh et al. (2010) is 
concerned with what happens to the weights 𝑤 in (3) when changes are made to the system elements 
(parameters and link gains). As with the LEEA, one may express the relationship either as influence 
measures or elasticities. Specifically,  

𝜀!   =   
!"
!"

!
!
, 𝜇!   =   

!"
!"
𝑎. 

Unlike in LEEA, however, where only those links in the model that are part of feedback loops will have 
any significance, all the links in the model are potentially relevant in the determination of the DDWs. 
Figure 3 presents the main analyses covered by these methods, as well as the inputs and outputs required 
by each. 

 
Figure 3. Schematic representation of EEA process† 

†Adapted from Saleh et al. (2010) 

As discussed above, interpretation of the results from these analyses is not necessarily straightforward, in 
particular because the methods could be used for different purposes, e.g., identifying structural 
explanations of behavior or policy design. As such, the outcomes of these analyses have not been 
standardized. In the examples below, I will use different representations of the outputs (i.e., the 
eigenvalues and eigenvectors, and the loop, link and parameter influences on them) that have proven 
useful to explain observed behavior in terms of system structure (feedback loops) and develop policy 
recommendations. 

In order to conduct a meaningful policy analysis, it is necessary to specify a set of criteria for what 
constitutes a successful policy change. Forrester (1982) discusses different measures of stabilizing 
policies and their possible tradeoffs. This issue, however, is difficult to treat in general, since the policy 
criteria are linked to the purpose of the model and the problem definition, which may involve transient 
behaviors like overshoot and collapse (e.g., in the World model), or the settlement in the system to 
undesirable end states (e.g., in the Urban Dynamics model). In this paper, I focus on policies that reduce 
the oscillatory tendencies of the system, since the model presented is designed to address this issue, and 
since, as was demonstrated by Kampmann and Oliva (2010), it appears to be one of areas where the 
eigenvalue analysis shows the most promise.  

In the context of unwanted instabilities (oscillations), effective policies are normally defined as those that 
either increase the damping of oscillatory behavior modes by making the real part more negative or 
decrease the frequency of oscillation. The LEEA can aid in finding the changes that have those desired 
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effects and explain why the effect occurs in terms of the changes in feedback loop gains they imply. 
Another perspective, afforded by the DDWA, is to make changes that reduce the weights  of the 
oscillatory behavior modes in a particular system variable, i.e., reduce the amplitude of the variable’s 
oscillations. Another aspect addressed by the DDWA is the degree to which external disturbances (from 
the exogenous variables) can be absorbed and dampened by the system. I have chosen to relegate this 
aspect to subsequent work. 

Detailed Example 

Both the LEEA and DDWA analysis methods have been implemented in Mathematica® routines and are 
available in the book electronic supplement with the example models in Vensim® and text parsing 
routines that generate the appropriate Mathematica® files from a Vensim® model file — the tools are 
also available online (Oliva and Kampmann 2010). Names of files available in the electronic supplement 
will be listed using a fixed-width font, e.g., model.mdl. 

The model I use to illustrate the method is Nathan Forrester’s macroeconomic model, used in his Ph.D. 
thesis (1982). The model serves this purpose well, both because it is close to linear and because the main 
emphasis of the model is to understand macroeconomic instabilities such as business cycles or longer 
cycles, and develop policies to stabilize these cycles. The purpose of the original model was to investigate 
various suggestions for fiscal and monetary policies to stabilize the economy. The model, which is shown 
in Figure 4, represents the relationships that are all part of standard macroeconomic theory, such as the 
consumption multiplier, the permanent income hypothesis, the Phillips curve, and the investment 
accelerator. For the reader unfamiliar with macroeconomics, detailed description of this theory can be 
found in any standard textbook, such as Dornbusch et al. (2010). 

w
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Figure 4. Diagram of the Forrester macroeconomic model 

The model (NF_model.mdl) has a total of 10 levels. Four of these (LU, SED, LED, AY, and PY) are 
first-order delays of unemployment, short and long term expected demand, aggregate production, and 
disposable income, respectively. Moreover, employment (EMP) and capital stock (K) are also effectively 
first-order adjustments to desired employment (DEMP) and desired capital (DK), respectively. Thus, only 
the price level (P), the inventory level (IV), and the money supply (M) are not first-order delays. (The 
latter is de-activated in the base run of the model.) 

The model used in our study is identical to the one listed in Forrester’s dissertation with the following 
three minor exceptions. 

• All smooth functions have been replaced by the explicit formulation of the stock adjustment 
process 

• Stock values have been scaled by a factor of 10e8 to avoid very large negative exponents, which 
the software may otherwise truncate when doing the analysis. 
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• Instead of random noise, the IV stock is initialized about 3% below its equilibrium level. This 
generates smooth trajectories that are easier to interpret and understand6. 

For our base simulation (Base.vdf) all policy levers are inactive, and the behavior of the model is the 
same as reported in chapter IV of Forrester’s dissertation. Figure 5 shows the characteristic response of 
the system, in this case aggregate output (Y) and the inventory (IV), capital (K) and employment (EMP) 
stocks. The inventory and employment stocks show a damped oscillation with a period of approximately 
4 years and the capital stock shows a dampened oscillation with a period of about 30 years (not visible in 
the figure). The peaks and troughs of inventory stock lag the peaks and troughs of output by 
approximately two and half years. As such, the model appears to do a good job of replicating the salient 
features of the business and the capital cycle. 

 

 
Figure 5: Base run of the Forrester model 

                                                        
6 In Forrester’s original model, the aggregated output (Y) and potential output (PTY) are modified with an additive 
random noise. The net effect of this noise is to perturb the system and prevents it from reaching equilibrium (the 
system is heavily dampened). While the EEA methods can work through these perturbations (see Oliva 2014), 
removing them allows us to understand the transient behavior from the point of linearization as if the system was not 
perturbed. This is a valid approach as the eigenvalues of the system are very stable throughout the simulation 
horizon (see following section). 
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LEEA  

Base Model 

The Mathematica® implementation of the LEEA utility requires two inputs to perform the analysis of a 
model: 1) a Mathematica® version of the model, and 2) a data file with the values of the system state 
variables at all the points in time that have been chosen for performing the analysis. The electronic 
supplement (Appendix.pdf) provides detailed instructions for preparing these files from our sample 
model (NF_model.mdl), as well as executing the analysis. The supplement also lists the current 
limitations of the implementation. 

The first two sections of the LEEA notebook (LEEA.nb) contain the instructions to use the utility and the 
commands to import the data. The following five sections are the computational core of the utility. 
Section 3 derives the graph representation of the model structure (see Oliva 2004); section 4 identifies a 
Shortest Independent Loop Set (SILS) (Oliva 2004) that will be used as the base description of the loops 
in the model; sections 5 and 6 symbolically derive the link and loop gains as well as the Jacobian matrix 
for the model; and section 7 calculates the loop elasticities for the time periods in the data table. While it 
is possible to explore the intermediate steps in each of these sections, the sections are not intended for 
user inspection. Instead, the last two sections present the analysis output in easy to interpret formats. 

Section 8 reports the evolution of eigenvalues through the different time instances where they were 
evaluated. The real and imaginary parts of the eigenvalues can be inspected in tabular and graphical form 
and it is also possible to obtain a plot with the eigenvalues in the complex plane for each time frame. 

Tables 1 and 2 report the real and imaginary parts of the 10 eigenvalues (one per independent state 
variable) of our sample model across the 10 annual evaluations. There are several things to note in these 
tables. First, one of the eigenvalues is 0 throughout the simulation. This is consistent with the fact that one 
of the stocks in the model (M) does not change in the base run. Second, all eigenvalues have a negative 
real part, which means that the system is dampened and all perturbations will eventually die off. This is 
consistent with the behavior observed in the two main stocks (Figure 5). Third, there are two pairs of 
complex eigenvalues {3,4} and {7,8} each representing a different frequency of oscillation. The first pair 
represents an oscillatory behavior mode with a period of 4.27 years (2𝜋 Im 𝜆 = 2𝜋/1.47) that 
corresponds to the business cycle, and the other corresponds to the capital cycle with a period of almost 
30 years (2𝜋 0.21).  
 

Eigenvalue 1 2 3 4 5 6 7 8 9 10 
Time        0 -16.000 -3.208 -0.571 -0.571 -0.400 -0.398 -0.160 -0.160 -0.022 0.000 

1 -16.000 -3.217 -0.488 -0.488 -0.406 -0.400 -0.227 -0.227 -0.029 0.000 
2 -16.000 -3.212 -0.537 -0.537 -0.401 -0.400 -0.188 -0.188 -0.025 0.000 
3 -16.000 -3.208 -0.579 -0.579 -0.400 -0.398 -0.154 -0.154 -0.021 0.000 
4 -16.000 -3.208 -0.578 -0.578 -0.400 -0.398 -0.154 -0.154 -0.021 0.000 
5 -16.000 -3.209 -0.569 -0.569 -0.400 -0.398 -0.162 -0.162 -0.022 0.000 
6 -16.000 -3.208 -0.570 -0.570 -0.400 -0.398 -0.161 -0.161 -0.022 0.000 
7 -16.000 -3.208 -0.575 -0.575 -0.400 -0.398 -0.157 -0.157 -0.022 0.000 
8 -16.000 -3.208 -0.575 -0.575 -0.400 -0.398 -0.157 -0.157 -0.022 0.000 
9 -16.000 -3.208 -0.574 -0.574 -0.400 -0.398 -0.158 -0.158 -0.022 0.000 

Table 1. System Eigenvalues (real part) – evaluated annually 
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Eigenvalue 1 2 3 4 5 6 7 8 9 10 
Time        0 0.000 0.000 1.469 -1.469 0.000 0.000 0.210 -0.210 0.000 0.000 

1 0.000 0.000 1.455 -1.455 0.000 0.000 0.232 -0.232 0.000 0.000 
2 0.000 0.000 1.462 -1.462 0.000 0.000 0.222 -0.222 0.000 0.000 
3 0.000 0.000 1.472 -1.472 0.000 0.000 0.205 -0.205 0.000 0.000 
4 0.000 0.000 1.471 -1.471 0.000 0.000 0.205 -0.205 0.000 0.000 
5 0.000 0.000 1.469 -1.469 0.000 0.000 0.210 -0.210 0.000 0.000 
6 0.000 0.000 1.469 -1.469 0.000 0.000 0.209 -0.209 0.000 0.000 
7 0.000 0.000 1.470 -1.470 0.000 0.000 0.207 -0.207 0.000 0.000 
8 0.000 0.000 1.470 -1.470 0.000 0.000 0.207 -0.207 0.000 0.000 
9 0.000 0.000 1.470 -1.470 0.000 0.000 0.208 -0.208 0.000 0.000 

Table 2. System Eigenvalues (imaginary part) – evaluated annually 

Finally, it should be noted that all eigenvalues are very stable throughout the simulation, meaning that 
there are no significant transitions in the model. This stability simplifies the analysis of the linkages 
between structure and behavior, as there are no significant changes of loop dominance in the trajectories 
of the base case. Kampmann and Oliva (2006) present a case of a model with significant changes in loop 
dominance and illustrate how the tools are useful in that context.  

Since eigenvalues are fairly stable through out the simulation, I focus on reporting the results of the 
analysis of loop dominance at time 5, the midpoint of the simulation. The utility, however, is capable of 
instantaneously generating similar reporting for each of the instances when the computations were 
realized. Figure 6 shows the system eigenvalues in the complex plain. 

 
Figure 6. System Eigenvalues at time 5 

Section 9 of the LEEA utility reports the impact of the feedback loop structure on the reference modes 
represented by each of the eigenvalues. For our sample model, the utility identified 27 loops in the SILS 
(Oliva 2004); see table 3.  
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Loop 1 AY>cAY 
Loop 2 EMP>cEMP 
Loop 3 K>KD 
Loop 4 K>KI 
Loop 5 K>KD>KI 
Loop 6 LED>cLED 
Loop 7 LU>cLU 
Loop 8 M>RCM 
Loop 9 P>cP 
Loop 10 PY>cPY 
Loop 11 SED>cSED 
Loop 12 LED>DIV>DII>A>cLED 
Loop 13 IV>DII>A>cSED>SED>Y 
Loop 14 LED>DK>KI>FS>A>cLED 
Loop 15 IV>DII>A>cLED>LED>DK>KI>FS 
Loop 16 IV>DII>A>cLED>LED>DK>KI>K>PTY>Y 
Loop 17 AY>R>DK>KI>K>PTY>Y>cAY 
Loop 18 EMP>PTY>Y>IV>DII>A>cSED>SED>DEMP>cEMP 
Loop 19 M>R>DK>KI>FS>A>cSED>SED>DEMP>PT>RCM 
Loop 20 EMP>PT>RCM>M>R>DK>KI>FS>A>cSED>SED>DEMP>cEMP 
Loop 21 M>R>DK>KI>FS>A>cSED>SED>DEMP>PT>TMS>RCM 
Loop 22 SED>DEMP>PT>CGS>G>FS>A>cSED 
Loop 23 EMP>U>cLU>LU>PT>CGS>G>FS>A>cSED>SED>DEMP>cEMP 
Loop 24 EMP>U>cP>P>R>DK>KI>FS>A>cSED>SED>DEMP>cEMP 
Loop 25 PY>C>FS>A>cSED>SED>Y>CDY>cPY 
Loop 26 PY>C>FS>A>cSED>SED>Y>T>CDY>cPY 
Loop 27 PY>C>FS>A>cSED>SED>DEMP>PT>CGT>GT>CDY>cPY 

Table 3. A Shortest Independent Loop Set 

The utility offers the option to report the loop gains for all the loops in the SILS. The gain values, 
however, are contingent on the magnitudes of the variables traversed by the loop, and it becomes difficult 
to make meaningful comparisons between loops. The influence metric reported in the following 
subsection addresses this shortcoming. Nonetheless, it should be noted that in the base case, loop 8, loops 
19 through 23, and loop 27 have a gain of zero as the policy trigger (PT) is inactive and there are no 
changes in the M stock. 

As discussed above, the focus of the analysis will be on the model’s oscillatory behavior modes, i.e., the 
two pairs of complex eigenvalues. Figure 7 shows the LEEA utility’s output for the loop influence on 
eigenvalue 3—the behavior mode with a 4.27 years period representing the business cycle. The utility has 
an option to control the number of loops to be included in this report; in this case the figure includes the 
top 10 most influential loops as measured by the absolute value of the influence metric (see eq. 5)—
regardless of its sign, loops with large influence metrics are more influential. To simplify the analysis, the 
utility sorts the loops in descending order of influence and reports the influence measure in the first row 
of the table. 
 

Loop 11 13 2 18 15 25 14 12 24 26 
Abs 1.062 0.69 0.548 0.499 0.237 0.231 0.209 0.108 0.076 0.069 

Real Part -0.938 0.113 -0.536 0.274 -0.196 -0.225 0.207 0.087 0.074 0.067 

 
Figure 7. Loop Influence (top 10 loops) on Eigenvalue 3 at time 5 
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It is also of interest to determine whether a particular loop acts as a stabilizing or destabilizing influence 
on the behavior mode. The sign of the real part of the influence metric determines this role, i.e., a negative 
real part implies a stabilizing (dampening) effect on the behavior mode, while a positive real part implies 
a destabilizing (exponential growth) behavior mode. The real part of the influence metric is reported in 
the second row of the output table. To facilitate interpretation of the role of each loops and its relationship 
to other influential loops, the utility generates a scatter plot of the influence metrics placing the absolute 
value of the influence in the x-axis and the real part in the y-axis. The further from the origin a loop is the 
more influential it is. Points below (above) the x-axis represent stabilizing (destabilizing) loops.  

From Figure 7, it is clear that the business cycle is destabilized by loops 13 and 18 (the rapid adjustment 
of inventory and the interaction between inventory and employment) and is stabilized by loops 11 and 2 
(the slow adjustments of expected demand and inventory). Each of the stabilizing loops has links within 
the destabilizing loops. 

Similar analysis (see Figure 8) reveals that the capital cycle (the oscillatory behavior mode with a period 
of 30 years represented by eigenvalue 7) is destabilized by loops 15, 25 and 11 (the multiplier effects of 
capital and consumption, and the short term response to estimated demand) and it is stabilized by loops 6, 
10 and 13 (the smoothing process to adjust Long Term Estimated Demand, the Adjustment of Permanent 
Income, and the short term adjustment of inventory). 
 

Loop 15 25 11 6 10 13 4 2 14 18 
Abs 0.229 0.222 0.211 0.202 0.196 0.195 0.151 0.115 0.111 0.081 

Real Part 0.225 0.21 0.171 -0.192 -0.097 -0.19 -0.141 0.111 -0.105 -0.041 

 
Figure 8. Loop Influence (top 10 loops) on Eigenvalue 7 at time 5 

This explanation of the two oscillatory behavior modes is consistent with the explanation provided by 
Forrester in his thesis (1982), and also by the explanation obtained from analyzing similar models that 
include the labor and capital interactions (Mass 1975, Oliva and Kampmann 2010). However, it should be 
noted that all these insights and a full structural explanation of the behavior of the system was generated 
out of a single run of the model as opposed to the exhaustive exploration through sensitivity analysis.  

From this analysis one could derive policy recommendations within the structure of the system. That is, 
the analyses reveals what loops need to be weakened or strengthen in order to bring more stability to the 
system. It is easy to identify the parameters that control the gain for each of the loops. For example, 
decreasing the parameter values of time to smooth short-term demand (tssd) and time to adjust 
employment (tae) would increase the gain of loops 11 and 2 respectively. By increasing the gain of these 
two loops that have a stabilizing influence in the business cycle, one would further dampen the business 
cycle.  

The above analysis, however, has the disadvantage that it only identifies leverage points within the active 
structure of the system. That is, LEEA cannot “see” beyond the active elements of the system and none of 
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influential loops are part of what Forrester described as part of the policy levers — not surprising since in 
this initial simulation the gain on those loops was set to zero. 

The ability of the method to assess the full model behavior at once, however, sets up the opportunity to 
assess several potential policy recommendations at once. While Forrester (1982) tested each of his five 
policies individually, given this tool one can assess them all at once and get the full benefit of 
understanding their interactions. I turn to this possibility in the following section. 

Full Model 

A full version of the Forrester model, including the activation of the policy triggers, is also available in 
the electronic supplement (NF_model_full.mdl). The model is structurally the same as the model used 
in the base case, but switches and parameter have been updated to activate feedback loops 8, 19 through 
23, and 27. As with the base case, the model is initialized in disequilibrium—IV stock 3% below its 
equilibrium level. Figure 9 shows the behavior of aggregate output and the inventory, capital and 
employment stocks under the full model (full.vdf) and compares each to the base case simulation 
(base.vdf). 

 

 
Figure 9. Full run of the Forrester model 

With all the intervention policies active at the same time, the frequency of the system’s response increases 
and the dampening ratio decreases relative to the base case. That is, the combination of all the five 
policies acting simultaneously makes the system respond faster and more aggressively to deviations from 
equilibrium. While the faster response prevents the capital stock (K) to deviate from equilibrium as much 
as in the base case, as a result of this aggressiveness, the system overreacts to those deviations and now 
the stocks in the business cycle (IV and EMP) take longer to reach equilibrium. Aggregate production (Y) 
follows closer the response of the business cycle in almost the same phase as the employment stock.  
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As discussed above, to conduct a meaningful policy analysis, it is necessary to specify a set of criteria for 
what constitutes a successful policy change. I will avoid this challenge, and instead focus on eliminating 
unwanted instabilities (oscillations), by either increasing the damping of oscillatory behavior modes by 
making the real part more negative or decrease the frequency of oscillation. From this perspective, the 
combination of policies introduced in the full model seem to be effective in increasing the dampening and 
reducing the frequency of the capital cycle, but have the opposite effect on the business cycle. The LEEA 
analysis can help us understand why these tradeoffs are taking place and focus on the subset of policies 
that might yield a better balance of these tradeoffs. 

After preparing the Vensim® files into the appropriate format (NF_model_full.mdl → 
nf_model_full.nb and full.vdf → full.tab) I ran them through the LEEA Mathematica® utility 
performing the linearization and full analysis of elasticities at one year intervals. 

Again, the system eigenvalues are stable through the simulation, thus I focus on a single period. Table 4 
reports the eigenvalues of the system at time 5. As this time the M stock is active in the system, all 
eigenvalues are non-zero. All real parts of the eigenvalues remain negative, thus the system remains 
dampened. More interestingly, the system now shows three complex pairs of eigenvalues representing 
three separate oscillatory behavior modes for the system. Eigenvalue pairs {1,2}, {4,5} and {8,9} denote 
oscillatory modes with a periods (2π/Im[λ]) of 5.96, 3.15 and 37.6 years respectively.  
 

Eigenvalue 1 2 3 4 5 6 7 8 9 10 
Real -16.104 -16.104 -3.055 -0.440 -0.440 -0.454 -0.385 -0.250 -0.250 -0.007 

Imaginary 1.054 -1.054 0.000 1.993 -1.993 0.000 0.000 0.167 -0.167 0.000 
Table 4. System Eigenvalues (full model) at time 5 

Analysis of the loops influencing these reference modes reveals the impact of the implemented policies. 
Figure 10 shows the most influential loops on eigenvalue 1 (period 5.96 years). Only loops 8 and 7 (long 
term labor adjustment and monetary adjustment) have a significant influence on this behavior mode—
both loops are stabilizing. Loop 8, as mentioned above, was not active in the base simulation, and while 
loop 7 was active, long-term unemployment (LU) had no further effect on the model, as the policy trigger 
(PT) was not activated. Thus, this behavior mode is strictly the result of the policies introduced. This is in 
itself an interesting finding, as in addition to affecting the two existing oscillatory behavior modes (see 
discussion below), the policy implementation in itself introduces an oscillatory pattern with a period of 
six years. The two influential loops in this reference mode are first order delays on stocks that determine 
the intensity of the policy trigger (LU), or the speed of the policy adjustment (M), and their gain is 
determined by identical time constants. 
 

Loop 8 7 22 23 21 2 15 14 11 19 
Abs 7.894 7.863 0.523 0.521 0.474 0.096 0.094 0.089 0.073 0.048 

Real Part -7.888 -7.827 0.07 -0.101 -0.064 -0.026 0.025 -0.024 -0.019 -0.007 

 
Figure 10. Loop Influence (top 10 loops) on Eigenvalue 1 at time 5 (full model) 
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This oscillatory behavior mode represented by eigenvalues {4,5} (period 3.15 years) is most influenced 
by two stabilizing loops (11 and 2) (see Figure 11). These are the same two loops identified as dampening 
the business cycle on the base simulation and they have almost the same effect on the eigenvalue. 
Comparing this influence scatter plot with the one for the business cycle in base case (Figure 7), two 
major differences become apparent. First, loop 13, the short-term adjustment of inventory, changes from 
destabilizing to marginally stabilizing. Both the magnitude and the destabilizing effect (the size of the real 
part) of this loop have been reduced with the introduction of the policies. It is interesting to note that loop 
13 has no active links to the 7 loops introduced with the policy recommendations but its change in 
relative influence is the result of other loop interactions. Second, loop 23, the counter cyclical government 
spending policy, is now a significant destabilizing influence in the business cycle. While the policy 
increases aggregate demand (A) in order to affect demand expectations and long term employment (EMP) 
towards faster equilibrium, the policy has a short term effect of depleting the existing inventory (IV)—
through final sales (FS)—that further exacerbates the disequilibrium between aggregate production and 
demand, causing inventories to drop. 
 

Loop 11 2 13 7 23 18 14 15 8 22 
Abs 1.008 0.685 0.557 0.455 0.446 0.349 0.300 0.262 0.241 0.239 

Real Part -0.898 -0.630 -0.021 -0.110 0.052 0.211 -0.175 0.242 -0.034 -0.047 

 
Figure 11. Loop Influence (top 10 loops) on Eigenvalue 4 at time 5 (full model) 

This behavior mode from eigenvalues {8,9} is the same as the behavior mode captured by eigenvalues 
{7,8} in the base simulation. Figure 12 shows the 10 most influential loops on this reference mode. 
Comparing the this scatter plot with the one from the base case (Figure 8), it is clear that the destabilizing 
influence of loops 15 (capital adjustment), 25 (demand from disposable income), and 11 (short term 
demand expectations) has been significantly reduced – the real part of the influence metric of these three 
loops has been reduced by 24%, 35%, and 70% of their original values. The diminished role of loops 25 
and 11 implies that stabilizing loops 10 and 13 also loose their influence, as loop 10 shares links with 
loop 25 and loop 13 works interacts with loop 11. Loops 6 (capital investment) and 4 (long term demand 
expectations) retain their influence in the stabilizing effect on this behavior mode as the two first order 
loops dampen the response of all capital acquisition. The net effect of the elimination of the destabilizing 
loop is the reduction of frequency of the capital cycle (the period increases from 30 to 37 years).  
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Loop 6 11 4 2 25 13 15 26 1 16 
Abs 0.183 0.147 0.139 0.098 0.077 0.056 0.056 0.051 0.044 0.042 

Real Part -0.176 0.058 -0.139 0.054 0.075 -0.021 0.039 -0.049 0.028 -0.013 

 
Figure 12. Loop Influence (top 10 loops) on Eigenvalue 8 at time 5 (full model) 

Again, this analysis of the full model can be used to design the policy that would improve the results, 
looking, for instance, to reduce the strength of the countercyclical government spending as to mitigate its 
destabilizing effect on the business cycle while retaining the stabilizing effect of all policies in the capital 
cycle. The fact that the gains of all the loops that are being analyzed can be independently set (since this 
is what defines Independent Loop Set) immediately focuses our attention on the parameter that uniquely 
affects the gain of the countercyclical government spending loop, i.e. the Strength of the Countercyclical 
Government Spending (SCGS). 

A quick test reveals that reducing the strength of SCGS does indeed have the desired effect in the system, 
reducing the frequency of the oscillations in the inventory stock, without affecting the oscillations in the 
capital stock. Figure 13 shows the effect of changing SCGS from 1.00 to 0.25 on the behavior of these 
two stocks. While the effect of the parameter change is in the right direction, it is clear that its leverage on 
the actual behavior on the stocks of interest is very limited as a reduction of 75% of the strength of this 
policy only marginally reduces the frequency of the oscillations in the business cycle. An exploration of 
the projection of each of the eigenvalues in the stocks of interest, and an assessment of the impact of the 
parameter values in this projection has been found to be much more effective for policy design. The next 
section addresses the details of the Dynamic Decomposition Weight (DDW) analysis. 

 
Figure 13. Effect of policy to reduce the strength of SCGS from 1.00 to 0.25 

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê0.05 0.10 0.15
Abs@ID

-0.15

-0.10

-0.05

0.05

Re@ID

IV
7,000

6,500

6,000

5,500

5,000
0 1 2 3 4 5 6 7 8 9 10

Time (Year)

G
oo

ds
 u

ni
ts

IV : Base
IV : Full

IV : Policy

K
50,000

49,750

49,500

49,250

49,000
0 1 2 3 4 5 6 7 8 9 10

Time (Year)

G
oo

ds
 u

ni
ts

K : Base
K : Full

K : Policy



 

 

20 

DDWA 

Full Model 

Unlike the LEEA utility, the Mathematica® implementation of the DDWA utility (DDWA.nb) only 
requires the Mathematica® version of the model7, as the elasticities of all parameters are estimated from 
the model’s initial conditions. The electronic supplement provides detailed instructions for preparing this 
input file. 

The first two sections of the DDWA notebook contain the instructions to use the utility and some 
functions required by the utility. The following three sections are identical to corresponding sections in 
the LEEA utility. Section 3 derives the graph representation of the model structure. Sections 4 and 5 
symbolically derive the edge and loop gains as well as the Jacobian matrix for the model8. Section 6 
performs the computations for the dynamic decomposition weight (see eq. 3 above) and reports graphs of 
the decomposition of the behavior of each of the stocks decomposed to each of the behavior modes 
represented by the eigenvalues. The graphs are available in absolute stock values, or normalized by 
dividing by the constant term of eq. 3, thus making the contribution of each eigenvalue comparable. 

Section 7 performs the core computations to determine the elasticities of the weights (w in Eq. 3) to 
parameters values and links and section 8 provides different reporting options for these computations. 
There are three options to report the parameter and link elasticity tables: i) reporting by stock, ii) reporting 
by behavior mode, and iii) reporting with eigenvalue elasticity. The first option allows the user to focus 
on a particular stock and a table with the elasticity of all DDWs of that stock (the ws in equation 3) to all 
parameters (links) is displayed. The second option allows the user to focus on a particular behavior model 
(eigenvalue) and a table of the elasticity of all DDWs of that eigenvalue to all parameters (links) is 
displayed. The final option reports, for a selected stock and behavior mode, the weight elasticity as well 
as the elasticities of the real and imaginary parts of an eigenvalue to each parameter (link).  

From the LEEA of the full model, we are interested in reducing the frequency of oscillation of the 
business cycle (-0.44+1.99i)9. The stocks involved in the feedback loops responsible for this behavior 
mode are inventory (IV), short-term expectation of demand (SED) and employment (EMP) (loop 18). 
Table 5 reports, in descending order, the elasticities of the DDW on the inventory stock and real and 
imaginary part of the business cycle eigenvalues to all the model parameters. 

                                                        
7 See LEEA section above for a description of the utility to translate a Vensim® model into a Mathematica® version 
suitable for these analysis. 
8 This is clearly a replication of computational effort. I plan to integrate these two analyses into a single utility in the 
near future. 
9 Note that the value of the eigenvalue reported in table 5 is slightly different from the value reported in table 4. This 
is because table 4 reports the eigenvalues at time 5 whereas the analysis in table 5 is based on the values of the 
eigenvalues at time 0. The easiest way to perform the DDW analysis for that particular point in time would be to 
initialize the model at the values the full simulation shows at that point in time. This is something that should be 
addressed once the two analyses are incorporated into a single platform. 
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Table 5. Elasticity of business cycle eigenvalue and DDW on inventory stock to model parameters  

Quick inspection of the table reveals the reason for the limited impact of the changes in SCGS on the 
frequency of interest discussed in the previous section. The parameter has only a marginal effect of the 
DDW on the inventory stock (elasticity = -0.0625, ranked 12th in the table), and the elasticity of the 
eigenvalue to this parameter is only marginal. Parameters higher in the table will have a more dramatic 
impact on the specific stock behavior mode combination. As an example, Figure 14 shows the effect of 
increasing the length of the time to adjust inventory (TAI), the top parameter in the list, form 0.4 to 0.8 on 
the inventory and capital stocks. 
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Figure 14. Effect of policy to increase the time to adjust inventory (tai) from 0.4 to 0.8 

Clearly, the tool cannot judge the feasibility of implementation of the different policy changes, but the 
comprehensive assessment of the impact of all parameters (links) on all stocks and reference modes 
allows for a very rapid identification of the parameters with the highest leverage on a particular behavior 
mode of a specific stock. 

Discussion and Conclusion 

The two methods described in this chapter, Loop Eigenvalue Elasticity Analysis (LEEA) and Dynamic 
Decomposition Weight Analysis (DDWA) are predicated on the idea that it is possible to linearize, 
around a particular operating point, a non-linear model. Once that linearization takes place, it is possible 
to characterize the system behavior in terms of the eigenvalues of the system matrix. LEEA identifies the 
feedback loops that are responsible for each of the behavior modes represented by each eigenvalue. As 
such, it is a powerful tool to formally establish the relationships between model structure and observed 
behavior. This linkage between model structure and behavior is critical to dynamic modelers, not only in 
that we now have certainty on what are the structural elements responsible for the behavior, but also as a 
general map of the feedback loops that are crucial for policy analysis.  

DDWA uses the system matrix eigenvectors to identify a closed form projection (weight) of each 
behavior mode on the state variables. By assessing the elasticity of these weights to model parameters 
(links) it is possible to formally identify the parameters (policies) with the highest leverage on a particular 
behavior mode of a state variable. 

While the linearization of the model represents an approximation, our experience from having analyzed 
dozens of models is that the approximation is quite valid whenever the model is reasonably close to the 
linearization of the operating point and the proposed applications (identification of dominant structure and 
high leverage policies) do not require the numerical precision that is affected by this approximation.  

The benefits of the method are significant. First, it is a formal analysis and linkage of the model structure 
and behavior. The closed form solutions used by these methods make the analyses traceable, 
programmable and replicable. This means that even novice modelers can benefit from the power of the 
insights generated by the methods. Second, the methods are comprehensive in that they assess the overall 
behavior of the system and its structure. The simultaneous evaluation of all model structure and behavior 
allows assessment of how different pieces of structure behave in the context of the overall system, i.e., 
with other structural pieces in place, something that is clearly lost with partial model simulations. Third, 
the methods are efficient; the analysis of a single simulation reveals model structural insights that used to 
take hundreds of simulations and sensitivity analysis to develop. Finally, the methods are effective in that 
they have consistently replicated previous analysis, behavior narratives, and policy design analysis. 
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The methods, however, have some clear limitations and disadvantages. The first limitation, and probably 
the most significant in terms of hampering the broad adoption of the methods, is that the interpretation of 
the analysis output requires some basic understanding of control theory and linear algebra. Second, the 
linearization step requires that all table functions must be analytical and continuously differentiable (C1). 
Future model parsers could eventually address this limitation and while in most cases this only requires 
an additional step to express the table function, this requirement reduces the flexibility and spontaneity of 
testing different formulations in the model. Third, although there are no known computational limitations, 
the calculation of eigenvalues and eigenvectors, especially through multiple linearization points, might be 
computational intensive. Finally, as currently implemented, the parser does not support macros, arrays, 
and most dynamic functions.  

The above limitations still make the analysis an “expensive” undertaking. In a recent analysis of a 
previously-build, large (13 stocks, 44 auxiliaries, 33 parameters, 34 loops in the ILS) model with random 
inputs, it took ~90 seconds to run the utilities to perform the LEEA and DDWA and about 45 minutes to 
interpret the results and prepare a report (Oliva 2014). However, preparing the model for the utilities (i.e., 
formulating SMOOTH functions explicitly, eliminating MIN, MAX and IF_THEN_ELSE statements, 
and replacing table functions with analytical forms) took more than 8 hours. While 8 hours is significantly 
shorter time than the weeks it took the author to develop an intuition for the model behavior, this kind of 
overhead makes these analyses a post-modeling exercise, rather than an integral part of the model-
building/learning process. While the ‘model preparation’ stage would have been much shorter if the 
software limitations had been considered when building the model, adherence to these requirements 
would have limited the developer’s appetite for testing the model and exploring alternative formulations. 
Clearly, reducing the overhead imposed by the current limitations of the experimental tools here 
presented is a major leverage point for the broader adoption of these methods.10 Adoption of formal 
analysis of models’ behavior will not only make modelers and analysts more efficient, but would also 
improve the overall quality of the dynamic modeling work. 

Challenge 

The following is a series of challenges for the reader to develop a better intuition of the analyses output as 
well as a way to explore the different reporting options of the utilities. 

• Loops 17 and 24 are the only loops that contain the interest rate (R) that are active in the base 
case. What is the role of these loops in that base run? What behavior modes do they affect? 

• How does the role of R change in the full model? What behavior models is it affecting? 
• What parameter changes (policies) would you introduce to augment (diminish) the impact of the 

interest rate (R) on the business cycle? On the capital cycle?  

Answers to these questions and a description of a strategy on how to go about answering them are 
available in the Challenge.pdf document in the electronic supplement. 

                                                        
10 All Mathematica® notebooks are open for inspection of algorithms and partial output, and the translator Perl code 
is available for downloading in the utility’s website.  
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